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It is proved without resort to "calculus methods" that every continuous 
group multiplier for R can be reduced to the identity by a continuous 
"remultiplication." The method introduced may generaIize to infinite- 
dimensional Abelian groups such as occur in analyzing the projective 
representations of the Bondi-Metzner-Sachs (BMS) group. 

1. INTRODUCTION 

Projective, as opposed to true, representations of Lie groups made an 
unexpected entrance into physics with the Dirac spinors. According to later 
analysis the appearance of  such representations, characterized by the relation 

R(g)R(h) = g(g, h)R(gh) (1.1) 

is rooted in the fact that a quantum-mechanical-state vector is determined 
only up to an overall phase. Accordingly, a "symmetry group" acts in the 
Hilbert space of the system in terms of unitary (or "antiunitary" in certain 
cases) operators related by (1.1) (in which ,r is now a complex number of 
absolute value 1). 

Just as the Galilean group is the symmetry group of  classical physics, the 
so-called BMS (Bondi-Metzner-Sachs) group is, from a certain point of  view, 
that of general relativity. Therefore the classification of its irreducible unitary 
projective representations is of great interest. In particular, there is the 
mathematical question as to what extent the class of  projective representations 
is broader than that of  true representations [characterized by (1.1) with ~ -= 1]. 
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Recent work of McCarthy 1 (1977) has almost answered this question, but a 
technical problem remains. The present paper stems from his suggestion 
(private communication) that a solution by noncalculus methods of the 
analogous problem for the group R might provide a clue to the BMS case. 
In fact, the result on which the present method is based (the theorem of  
Section 2) probably will generalize to infinite dimensions, although I have 
not been able to prove this. 

There seem to be two distinct ways in which nontrivial group multipliers, 
as a is known, can arise, at least for a continuous group G. The first has to do 
with the overall topology of the group, the second only with its local structure. 
The first, as exemplified by the relation between the double connectivity of the 
three-dimensional rotation group and the existence of half-integral angular 
momentum, is probably the most widely recognized. But the second is also 
physically important, for instance, in representations of the Galilean group, 
or equivalently in the Weyl form of the Heisenberg commutation relations 
(Jauch, 1968; Weyl, 1950). For the BMS group it is the analysis of the second 
way which is causing trouble. Let us be more concrete. 

For physical reasons one wants continuous projective representations of 
G, that is, representations which are continuous maps of G into the space of 
projective transformations of the representation space H. But a projective 
transformation is equivalent modulo phase to a unitary operator, and Wigner 
(see Bargmann, 1954) has shown that it is always possible, at least locally, to 
choose the phases in such a way that both a and R in equation (1.1) are 
continuous functions. 

By further changing the phases of R one can hope to reduce R to a true 
representation. I f  

R(g) = R(g)l~(g) (1.2) 

then o in (1.1) becomes 6, where 

2t(g, h) o" 
S(g, h) = A('-~'A(-h) I.g, h) (1.3) 

is said to be equivalent to o. The condition that R be equivalent to a true 
representation is thus that o(g, h) be of the form 

,~(g, h) = a(g)a(h)/a(gh) (1.4) 

so that ~ ~ 1. 
Since it would not be of much use to reduce the problem of finding the 

continuous projective representations of G to that of finding its discontinuous 
true representations, we want A to be continuous. The problem we will solve 

1 See McCarthy also for background and other references on group multipliers. 
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is as follows: Given a continuous multiplier a for G = R, to find a continuous 
"remultiplier" which trivializes ~ [equation (1.4)]. In the BMS case in question 
it has been proved (McCarthy) that (1.4) can be solved, but not necessarily 
by a continuous h. The usual methods which prove continuity for G = R fail 
for infinite-dimensional groups since they rely ultimately on some form of 
local compactness [see McCarthy]. 

2. THE RESULT FOR G = R 

Let ~: R • R --~ C be any group multiplier for G = R(+) ,  the additive 
group of the real line. By definition a is any (nowhere zero) map fulfilling the 
identity Yx, y, z ~ R: 

tr(x, y)cr(x + y, z) = o(x, y + z)g(y, z) (2.1) 

which is the translation via (1.1) of  the associativity of group multiplication 
[which is just addition when G = R(+)].  Conversely, any solution of (2.1) 
can be associated to a projective representation R of R whose substratum is 
a space H of  complex functions on R and whose action can be indicated by 

R(x ) l y )  = ~(x, y)[x + y )  (2.2) 

where Ix) represents a function concentrated at x. In terms of R our task is 
to determine A so that ~ in (1.2) becomes a true representation. For  con- 
venience we will normalize ~ and R so that, equivalently, 

R(0) = 1 (2.3) 

cr(0, x) = e(x, 0) = 1 (2.4) 

As a first step in finding h consider any rational number q and the cyclic 
subgroup (q) ~ qZ of Q generated by q. I f  R is to be a true representation, 
then 

R(mq) = R(q)m m ~ Z (2.5) 

which means that A(q) determines A(s) for all s in (q). In particular, if 
q = (n!) -1, then a choice of/~(1/n!) defines by (2.5) a self-consistent choice 
of k(s)  and thereby of  h(s) for all s in (I/n!). We can therefore choose 
inductively 

/~(1),/~(1/2), _~(1/6) . . . .  

to produce a self-consistent set of  k 's .  At each stage the requirement 

k(1/n!)" = k(1/(n - 1)l) 

determines A(1/nl) up to multiplication by an nth root of unity. This process 
produces a self-consistent choice of  A for all s in 

U = Q 
n f f i O  " 
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(the Appendix contains an explicit expression for A). Since Q is dense in R 
this will be enough to define A everywhere---if A can be chosen with the 
necessary continuity. 

In trying to prove the continuity (on Q) of A as we have constructed it so 
far, we would be troubled by the arbitrary choices involved in that con- 
struction. By working instead with/~ = log A we can escape this difficulty 
since the solution of the log of (1.4), 

where 

p(x, y) =/~(x) + / , ( y )  - /~ (x  + y) (2.6) 

~(x, y) = e'~.~' (2.7) 

~(x) = e ~x) (2.8) 

involves on Q only one free choice. 
However, this brings in the nuisance that a solution of (1.4) (which we 

have established) does not immediately give one of (2.6)-(2.8) since the 
passage to logarithms is not unique. Nevertheless, I claim that (2.6) is soluble 
on Q. 

In the first place, because a is continuous (2.7) determines a unique 
continuous p with p(0, 0) = 0. We thus get a continuous map p: R • R --> C 
obeying [from (2.1)] 

p(x, y) + p(x + y, z) = p(x, y + z) + p(y, z) (2.9) 

Notice now that the above construction on Q of ~ from a rests ultimately 
only on (2.1) and the fact that nth roots exist in the multiplicative group 
C - {0}. But (2.9) is the same as (2.1) only with the additive group C replacing 
C - {0}. Since nth "roots" (i.e., division by n) exist also in C(+), the corre- 
sponding conclusion can be drawn, namely, the existence of t~: Q---~ C 
satisfying (2.6). 

We want to extend t~ to a continuous remultiplier on R. Call a function 
f :  Q - +  C completably continuous iff it extends to a continuous function 
f :  R - +  C. We will show that/z,  which we consider henceforth only as a 
function with domain Q, is completably continuous. 

The notion key to this demonstration is the following. A funct ionf f rom 
a subset S of R into C will be said to be PA (preadditive) if it satisfies: Vx, y, 
U, V ~ S :  

x + y = u + v ~- f (x )  + f ( y )  = f (u)  + f(v)  (PA) 

If  equality is weakened to "difference ~< r f will be called r on S. 

Lemma 1. V~ ~ R, Vr > 0, 38 > 0 such that tz is a-PA on 

I ~ - ( ~ -  3 , ~ +  3) ~ Q 
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Proof  Because o f  our  normal iza t ion  o f  a, p(O, x) = p(x, 0) = 0. F r o m  
(2.9) p(x + y, z) - p(x, y + z) = p(y, z) - p(x, y). Substi tuting (2.6), 

[/*(x + y) + Ix(z)] - [/,(z + y) + Ix(x)] -- p(y, z) - p(x, y) (2.10) 

Choose  3 so tha t  [p(s, t)[ < ~/2 for  s in I and  It[ < 23. I f  x, y, u, v ~ I and 
x + y = u + v, then the substi tut ion z --* y, x ---* u, y - +  x - u yields 

[ ~ ( x )  + ~ ( y ) ]  - [~ (v )  + Ix(u)] = p ( x  - u, y )  - p(u ,  x - u)  

which is less than  e by  our  choice of  3. [ ]  

Lemma 2. I f  Ix is not  comple table  at  ~ e R, then it is unbounded  
(on Q) in every ne ighborhood  of  ~. 

Proof  Let  N c Q be any  ne ighborhood  containing ~ and  M any 
positive integer. Since Ix is not  completable  at  ~ there is ~ > 0 such tha t  

(V8 > O)(3x, u): Ix - ~:l, I u - ~[ < 3 and /z(u) - / x ( x )  > E (2.11) 

Pick 3 so tha t  t~ is (E/2)-PA on I . ' = - - ( ~ -  2M3, ~ + 2M3) and so tha t  
I c N. I f u  and x are as in (2.11), then (E/2)-PA with u - x = y - v ~ z, 
together  with (2.11), yields Ix(v + z) - Ix(v) > r - E/2 = ~/2. By induction,  
therefore (clearly, x + M z  z Q since x, u ~ Q),  

I~(x + Mz)  - Ix(x) > M~/2 > max  ([ix(x + Mz)  l, I/z(x)[) > Mr 

Since bo th  x and  x + M z  ~ I c N while M was arbi t rary,  we are done. [ ]  

Theorem. Let  S be any  finite grid of  evenly spaced points  o f  R. I f  
the real funct ion f is ~-PA on S, then f is approx imated  on S to 
within E/2 by some straight line fo(x) = A x  + B. 

Proof  Let  S comprise  x0 < xl  < x2 < - . .  < xN. We prove  by induc- 
t ion on N the slightly strengthened assertion t h a t f i s  within [(N - 1)/N]r o f  
the straight line through the points  (xo, f (xo))  and (xN, f(xN)). The start ing 
case N = 1 is trivial. In  carrying out  the inductive step it is convenient  to 
work  with S = {0, 1 . . . . .  N}, fix k such that  0 < k < iV, and examine the 
value w ~ f ( k ) .  

Let  N = m k  + s with 0 < s << k (not 0 <~ s < k) and consider the two 
grids 

(0, k, 2k . . . . .  ink} and [ 1 7 -  k , N -  k + 1 . . . . .  N - 1, N} 

bo th  o f  which have fewer than  N + 1 points. The  inductive hypothesis  for  
the first grid supplies 

w <~ m -  l f ( o )  + l f ( m k ) + m -  1 
t n  i n  I n  
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The inductive hypothesis for the second grid supplies 

f (mk)  <~ k f ( N -  k) + ~---~ f ( N )  + k ~.___~1 

Finally, E-PA for the points 0, k, N - k, N says 

w + f ( N  - k) < r + f(O) + f ( N )  

Strung together, these three inequalities become, after some algebra, 

mkw < (km - k + s)f(O) + k f (N)  + (kin + s - 1)r - sw 

or, since k m +  s = N, 

By symmetry we can write also 

N _ ~ f (  k N - 1  
w>~ 0 ) + N  c 

and together these establish 

f(O) + f ( N )  - <~ ~ e [] 

Corollary 1. The theorem holds also i f f  is a complex function. 

Proof. To show that 

mul t ip lyfby  the appropriate phase to renderf(k) real and apply the theorem 
to the real part of f .  [] 

Remark. By the Hahn-Banach theorem the range o f f  could be any 
Banach space. 

Corollary 2. I f  o: Q x Q --~ C is continuous and/~: Q --~ C is as 
in (2.6), then ~ is completably continuous. 

Proof. Let ~ �9 R. By Lemma 1 there are a, b �9 Q, a < ~ < b such that 
~ is 1-PA on [a, b]. Since every point of [a, b ] c  Q lies on some finite 
grid with endpoints a, b, it follows from Corollary 1 that ~ can vary by no 
more than + 1 on [a, b], which contradicts Lemma 2 unless ~ is completable 
ate.  []  

Suppose finally that o has been derived from a multiplier e. Completing 
~ to a continuous function /7: R--~ C one easily traces back through the 
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relations (2.7), (2.8), (1.4) [with G = R(+)]  to show that A(x) -- e ~x) is a 
continuous remultiplier for a. 

3. SUGGESTIONS FOR T H E  INFINITE-DIMENSIONAL CASE 

I have tried to formulate the above so that R can be replaced with an 
infinite-dimensional Abelian group, for example, Hilbert space H. Assuming 
that a is symmetric as well as continuous, there will exist/~ which, as before, 
may be discontinuous. Now, however, there is no dense analog of Q on which 
~, must be completably continuous. However, /~ will still be locally E-PA 
(Lemma 1) and one can hope to generalize the theorem of Section 2 as follows: 

" I f f i s  ~-PA on an appropriate subset S of H, then it is within a of some 
PA function fo on S. (Thus "PA" generalizes " =  A x  + B" . ) "  

I f  the appropriate sets S include open sets (or, analogous to Q, sets that 
are dense in some open set), this generalization would furnish, for IL in some 
open set U (or S dense in U), a PA function/~0 which would extend to all of  H 
(or a dense subset thereof) by the PA property. Since /~o would be PA, 
/2 ~-/~ - t~o + t~0(0) would be equivalent to ~ but bounded in the open set U. 
By Lemma 2,/2 would be continuous (or completably continuous) as desired. 

A P P E N D I X :  F O R M U L A  FOR A O N  Q 

We remark parenthetically that the argumentation of Section 2 would 
have worked, not only for Q, but for any dense subgroup of  R which is the 
union of  an increasing sequence of  cyclic subgroups. For  example, the group 
{m2-r~: m, n ~ Z} is such a group, which is in some ways simpler than Q. 
Thus the formula derived below would look somewhat simpler for it. 

To construct a fairly explicit formula for A on Q consider a to be the 
multiplier of  a representation R of Q as described at the beginning of Section 
2. From (1.1) we can define functions on: Qn _+ C by 

R(xl )R(x2) .  . " R(xn) = or(x1, x2 . . . . .  xn)R(xl  + x2 + " "  + x,~) (2.12) 

(Thus a2 - ~.) From (1.1), (1.2), 
a(1) = 11 

a(1/2, 1/2) = A(1/2) 2 

Similarly, k(1/6) 8 = k(1/2) gives 

and /~(1/2)_R(1/2) = k(1) follows [since 

=~ A(1/2) = ~(1/2, 1/2) ~'2 

A(1/6) = A(1/2) 1'3 a3(1/6, 1/6, 1/6) l'a = a(1/2, 1/2)1/%a(1/6 , 1/6, 1/6) I'3 

Continuing inductively, and defining for convenience 

f (n ,  m) ~ ~,.(1/n, l/n . . . . .  I/n) 
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we get 

n 

2t(l/n !) = ~-~ f ( k  !, k)  (~- 1),1., 
k = 2  

where, o f  course, the arbi t rary  phases in f (  , )~t~z must  be chosen consistently 
for  all n. 

Final ly, /~(1/n!)  m = R(m/n!) shows tha t  

)t(m/n !) = A(1/n!)=/f(n!, m) 

In  terms o f  p,/~, and g ~ log f ,  we get [with t~(1) = 0] 

m n 
I~(m/n!) = ~ ~ (k - 1)! g(k!, k) - g(n!, m) 

]r ~ 

in which all ambigui ty  has disappeared.  
We have not  given an explicit fo rm for  f in terms o f  o, but  this follows 

directly (if not  uniquely) f rom (1.1) and  (2.12). For  example,  

,,~(x, x, x) = ,,(x, x)~(2x, x) 
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